问题 填空题
数列{xn}的通项xn=(-1)n+1,前n项和为Sn,则
lim
n→∞
S1+S2+…+Sn 
n
=______.
答案

由于数列{xn}的通项xn=(-1)n+1,前n项和为Sn

故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.

∴当n为偶数时,

s1+s2+s3+…+sn
n
=
1+0+1+0+…+1+0
n
=
n
2
n
=
1
2

lim
n→∞
S1+S2+…+Sn
n
=
lim
n→∞
1
2
=
1
2

当n为奇数时,

s1+s2+s3+…+sn
n
=
1+0+1+0+…+1
n
=
n-1
2
+1
n
=
n+1
2n

lim
n→∞
S1+S2+…+Sn
n
=
lim
n→∞
n+1
2n
=
1
2

故答案为:

1
2

填空题
判断题