问题
填空题
数列{xn}的通项xn=(-1)n+1,前n项和为Sn,则
|
答案
由于数列{xn}的通项xn=(-1)n+1,前n项和为Sn,
故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.
∴当n为偶数时,
=s1+s2+s3+…+sn n
=1+0+1+0+…+1+0 n
=n 2 n
,1 2
∴lim n→∞
=S1+S2+…+Sn n lim n→∞
=1 2
.1 2
当n为奇数时,
=s1+s2+s3+…+sn n
=1+0+1+0+…+1 n
=
+1n-1 2 n
,n+1 2n
∴lim n→∞
=S1+S2+…+Sn n lim n→∞
=n+1 2n
.1 2
故答案为:
.1 2