问题
解答题
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
|
答案
将曲线C的极坐标方程化为直角坐标方程为x2+y2-4y=0,
即x2+(y-2)2=4,它表示以(0,2)为圆心,2为半径的圆,
直线方程l的普通方程为y=
3 |
圆C的圆心到直线l的距离d=
1 |
2 |
故直线l被曲线C截得的线段长度为2
22-(
|
15 |
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
|
将曲线C的极坐标方程化为直角坐标方程为x2+y2-4y=0,
即x2+(y-2)2=4,它表示以(0,2)为圆心,2为半径的圆,
直线方程l的普通方程为y=
3 |
圆C的圆心到直线l的距离d=
1 |
2 |
故直线l被曲线C截得的线段长度为2
22-(
|
15 |