问题 解答题
已知在极坐标系下,圆C:p=2cos(θ+
π
2
)与直线l:ρsin(θ+
π
4
)=
2
,点M为圆C上的动点.求点M到直线l距离的最大值.
答案

圆C:p=2cos(θ+

π
2
) 即 x2+y2+2y=0,x2+(y+1)2=1,表示圆心为(0,-1),半径等于1的圆.
直线l:ρsin(θ+
π
4
)=
2
,即ρcosθ+ρsinθ-2=0,即 x+y-2=0,
圆心到直线的距离等于 
|-1+0-2|
2
=
3
2
2

故圆上的动点到直线的距离的最大值等于
3
2
2
+1.

多项选择题
多项选择题