问题 填空题
已知数列{an}中,an=
(2n)2
(2n-1)(2n+1)
,Sn为其前n项的和,则 
lim
n→∞
Sn
n
=______.
答案

an=

(2n)2
(2n-1)(2n+1)
=
4n2
4n2-1
=1+
1
4n2-1
=1+
1
2
(
1
2n-1
-
1
2n+1
)

∴Sn=n+

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
 )

=n+

1
2
(1-
1
2n+1
)=n+
n
2n+1

lim
n→∞
Sn
n
=
lim
n→∞
(1+
1
2n+1
)
=1

故答案为:1

单项选择题
选择题