问题
解答题
从极点O作直线与另一直线l:ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P轨迹的极坐标方程;(2)设R为l上的任意一点,试求RP的最小值.
答案
(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),
则ρρ0=12.
∵ρ0cosθ=4,
∴ρ=3cosθ即为所求的轨迹方程.
(2)由(1)知P的轨迹是以(
,0)为圆心,半径为3 2
的圆,3 2
而直线l的解析式为x=4,
所以圆与x轴的交点坐标为(3,0),
易得RP的最小值为1