问题
填空题
(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分) (A)在极坐标系中,过点(2
(B)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为 . |
答案
(A)∵圆ρ=4sinθ,∴ρ2=4ρsinθ,
∴x2+y2-4y=0,
∵极坐标系中,点(2
,2
),π 4
∴x=2
•cos2
=2,y=2π 4
sin2
=2,π 4
∵A(2,2)在x2+y2-4y=0上,
x2+y2-4y=0的圆心B(0,2),
∴kAB=
=0,2-2 0-2
∴过点A(2,2)的圆x2+y2-4y=0的切线方程为:x=2.
即ρcosθ=2.
故答案为:ρcosθ=2.
(B)分离出参数a+1,
∵a+1=|2x-1|-|2x+1|,
∵函数f(x)=|2x-1|-|2x+1|值域为:[-2,0)
∴a+1∈[-2,0)
∴a的取值范围为:-3≤a≤-1.
故答案为:[-3,-1).