已知数列{an}、{bn}的前n项和分别为Sn、Tn,且Sn=2-2an,Tn=3-bn-
(I)求数列{an}、{bn}的通项公式; (II)求
|
(I )由已知可得S1=a1=2-2a1,T1=b1=3- b1-1 2-1
∴a1=
,b1=2 3 1 2
当n≥2时,Sn=2-2an,Sn-1=2-2an-1
两式相减可得,an=Sn-Sn-1=-2an+2an-1
∴an=
an-12 3
∴数列{an}是以
为首项,以2 3
为公比的等比数列2 3
由等比数列的通项可得,an=
•(2 3
)n-1=(2 3
)n(3分)2 3
当n≥2,Tn=3-bn-
.Tn-1=3-bn-1-1 2n-2 2 2n-3
两式相减可得,bn=Tn-Tn-1=-bn+bn-1+1 2n-2
∴2bn=bn-1+1 2n-2
∴2nbn-2n-1bn-1=2,2b1=1
∴数列{2nbn}是以以1为首项,已2为公差的等差数列
2nbn=1+2(n-1)=2n-1
∴bn=
(6分)2n-1 2n
(II)Wn=a1b1+a2b2+…+anbn
则Wn=
+1 3
+3 32
+…+5 33 2n-1 3n
Wn=1 3
+1 32
+…+3 33 2n-1 3n+1
两式相减可得,
Wn=2 3
+2(1 3
+1 32
+…+1 33
)-1 3n 2n-1 3n+1
=
+2•1 3
=
(1-1 9
)1 3n-1 1- 1 3
-2 3 2(n+1) 3n+1
∴Wn=1-
(9分)n+1 3n
当n≥2时,3n=(1+2)n=1+2Cn1+22Cn2+…+2nCnn>2Cn1+22Cn2=2n2
∴0<
<n+1 3n n+1 2n2
∵lim n→∞
=0n+1 2n2
∴
(1-lim n→∞
)=1(12分)n+1 3n