问题 解答题
已知数列{an}、{bn}的前n项和分别为Sn、Tn,且Sn=2-2an,Tn=3-bn-
1
2n-2
. 
(I)求数列{an}、{bn}的通项公式;
(II)求
lim
n→∞
(a1b1+a2b2+a3b3+…+anbn).
答案

(I )由已知可得S1=a1=2-2a1T1=b1=3- b1-

1
2-1

a1=

2
3
b1=
1
2

当n≥2时,Sn=2-2an,Sn-1=2-2an-1

两式相减可得,an=Sn-Sn-1=-2an+2an-1

an=

2
3
an-1

∴数列{an}是以

2
3
为首项,以
2
3
为公比的等比数列

由等比数列的通项可得,an=

2
3
•(
2
3
)
n-1
=(
2
3
)
n
(3分)

当n≥2,Tn=3-bn-

1
2n-2
Tn-1=3-bn-1-
2
2n-3

两式相减可得,bn=Tn-Tn-1=-bn+bn-1+

1
2n-2

2bn=bn-1+

1
2n-2

∴2nbn-2n-1bn-1=2,2b1=1

∴数列{2nbn}是以以1为首项,已2为公差的等差数列

2nbn=1+2(n-1)=2n-1

bn=

2n-1
2n
(6分)

(II)Wn=a1b1+a2b2+…+anbn

Wn=

1
3
+
3
32
+
5
33
+…+
2n-1
3n

1
3
Wn=
1
32
+
3
33
+…+
2n-1
3n+1

两式相减可得,

2
3
Wn=
1
3
+2(
1
32
+
1
33
+…+
1
3n
)-
2n-1
3n+1

=

1
3
+2•
1
9
(1-
1
3n-1
)
1-
1
3
=
2
3
 -
2(n+1)
3n+1

Wn=1-

n+1
3n
(9分)

当n≥2时,3n=(1+2)n=1+2Cn1+22Cn2+…+2nCnn>2Cn1+22Cn2=2n2

0<

n+1
3n
n+1
2n2

lim
n→∞
n+1
2n2
=0

lim
n→∞
(1-
n+1
3n
)=1(12分)

选择题
单项选择题