问题 填空题
设an(3-
x
)n
(n=2,3,4,5,…)展开式中x一次项系数,则
lim
n→∞
(
32
a2
+
33
a3
+
34
a4
+…+
3n
an
)
=______.
答案

展开式的通项为 Tr+1=(-1)r3n-r

Crn
x
r
2

r
2
=1得r=2

∴an=3n-2Cn2

3n
an
=
3n
C2n
3n-2
=
2
n(n-1)
=
18
n(n-1)
=18×(
1
n-1
-
1
n
)

lim
n→∞
(
32
a2
+
33
a3
+
34
a4
+…+
3n
an
)

=

lim
n→∞
{18×[(1-
1
2
) +(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n-1
-
1
n
)]
}

=

lim
n→∞
[18×(1-
1
n
)]

=18.

故答案为:18.

单项选择题
单项选择题