问题
填空题
若f(n)=1+2+3+…+n(n∈N*),则
|
答案
由题意,f(n)=1+2+3+…+n=n(n+1) 2
∴
=f(n2) [f(n)]2
=n2(n2+1) 2 n2(n+1)2 4
=2(n2+1) n2+2n+1 2(1+
)1 n2 1+
+2 n 1 n2
∴lim n→+∞
=2f(n2) [f(n)]2
故答案为2
若f(n)=1+2+3+…+n(n∈N*),则
|
由题意,f(n)=1+2+3+…+n=n(n+1) 2
∴
=f(n2) [f(n)]2
=n2(n2+1) 2 n2(n+1)2 4
=2(n2+1) n2+2n+1 2(1+
)1 n2 1+
+2 n 1 n2
∴lim n→+∞
=2f(n2) [f(n)]2
故答案为2