问题 填空题
若f(n)=1+2+3+…+n(n∈N*),则
lim
n→+∞
f(n2)
[f(n)]2
=______.
答案

由题意,f(n)=1+2+3+…+n=

n(n+1)
2

f(n2)
[f(n)]2
=
n2(n2+1)
2
n2(n+1)2
4
=
2(n2+1)
n2+2n+1
=
2(1+
1
n2
)
1+
2
n
+
1
n2

lim
n→+∞
f(n2)
[f(n)]2
=2

故答案为2

单项选择题 A1/A2型题
单项选择题