问题
填空题
|
答案
根据等差数列求和公式,得
1+
+2+…+3 2
=n+1 2
•n•(1+1 2
)=n+1 2 n(n+3) 4
∴lim n→∞
(1+1 n2
+2+…+3 2
)=n+1 2
(lim n→∞
•1 n2
)=n2+3n 4 lim n→∞
=n+3 4n 1 4
故答案为:1 4
|
根据等差数列求和公式,得
1+
+2+…+3 2
=n+1 2
•n•(1+1 2
)=n+1 2 n(n+3) 4
∴lim n→∞
(1+1 n2
+2+…+3 2
)=n+1 2
(lim n→∞
•1 n2
)=n2+3n 4 lim n→∞
=n+3 4n 1 4
故答案为:1 4