问题
解答题
求数列的前n项和:1+1,
|
答案
设Sn=(1+1)+(
+4)+(1 a
+7)+…+(1 a2
+3n-2)1 an-1
将其每一项拆开再重新组合得Sn=(1+
+1 a
+…+1 a2
)+(1+4+7+…+3n-2)1 an-1
当a=1时,Sn=n+
=(3n-1)n 2 (3n+1)n 2
当a≠1时,Sn=
+1- 1 an 1- 1 a
=(3n-1)n 2
+a-a1-n a-1 (3n-1)n 2