问题 选择题
在△ABC中,AD为BC边上的中线,若AB=6,AC=4,设AD=x,则x的取值范围是(   )
A.0<x<10B.2<x<8 C.1<x<5 D.2<x<10

 

答案

答案:C

题目分析:延长AD到E,使AD=DE,可构造平行四边形ABEC,从而BE=AC,在△ABE中运用第三边的长度应是大于两边的差而小于两边的和,求得对角线AE的取值范围,从而得出AD的取值范围.如图,延长AD到E,使AD=DE,∵AD是BC边上的中线,∴BD=DC∴四边形ABEC是平行四边形∴BE=AC=4在△ABE中,根据三角形的三边关系,得2<AE<10,即2<AE<10.∵AD是BC边上的中线,∴AD=∴AD的取值范围是1<AD<5.故答案为C.

点评:本题需要理解的是如何根据已知的两条边求第三边的范围,灵活运用平行四边形的性质和三角形的三边关系是解题的关键.

单项选择题
问答题 简答题