问题
解答题
已知数列{an}的前n项和Sn和通项an满足Sn=
(1)求数列{an}的通项公式; (2)当q=
(3)设函数f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),是否存在正整数m,使
|
答案
(1)当n≥2时,an=Sn-Sn-1=
(an-1)-q q-1
(an-1-1)(2分)q q-1
⇒
=q(2分)an an-1
又由S1=a1=
(a1-1)得a1=q(3分)q q-1
∴数列an是首项a1=q、公比为q的等比数列,∴an=q•qn-1=qn(5分)
(2)a1+a2+an=
(7分)
[1-(1 3
)n]1 3 1- 1 3
=
[1-(1 2
)n]<1 3
(9分)1 2
(3)bn=logqa1+logqa2+logqan=logq(a1a2an)=logqq1+2+n=
(9分)n(n+1) 2
∴
+1 b1
++1 b2
=2(1-1 bn
+1 2
-1 2
+1 3
-1 n
)=2(1-1 n+1
)(11分)1 n+1
∴2(1-
)≥1 n+1
,即m≤6(1-m 3
)1 n+1
∵n=1时[6(1-
)]min=3,1 n+1
∴m≤3(14分)
∵m是正整数,
∴m的值为1,2,3.(16分)