问题 解答题

某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).

(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;

(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;

(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.

答案

解:

(1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2

y1=(x﹣4)×5+20×4=5x+60,y2=(5x+20×4)×0.9=4.5x+72.

(2)设y1>y2,即5x+60>4.5x+72,

∴x>24.

当x>24整数时,选择优惠方法②.

设y1=y2

∴当x=24时,选择优惠方法①,②均可.

∴当4≤x<24时,选择优惠方法①.

(3)因为需要购买4个书包和12支水性笔,而12<24,

购买方案一:用优惠方法①购买,需5x+60=5×12+60=120元;

购买方案二:采用两种购买方式,

用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;

用优惠方法②购买8支水性笔,需要8×5×90%=36元.共需80+36=116元.显然116<120.

∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.

名词解释
单项选择题 A1/A2型题