问题
解答题
已知数列{an}的各项均是正数,其前n项和为Sn,满足( p-1)Sn=p2-an,其中p为正常数,且p≠1. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)由题设知(p-1)a1=p2-a1,解得a1=p.(2分)
∵( p-1)Sn=p2-an,
∴( p-1)Sn+1=p2-an+1,
两式作差得(p-1)(Sn+1-Sn)=an-an+1.
∴(p-1)an+1=an-an+1,即an+1=
an,(4分)1 p
∴数列{an}是首项为p,公比为
的等比数列.1 p
∴an=p(
)n-1=(1 p
)n-2.(6分)1 p
(Ⅱ)∵bn=
=1 2-logpp2-n
=1 2-(2-n)
(8分),1 n
∴bnbb+2=
=1 n(n+2)
(1 2
-1 n
)(10分),1 n+2
∴Tn=b1b3+b2b4+b3b5++bnbn+2
=
[(1 2
-1 1
)+(1 3
-1 2
)+(1 4
-1 3
)+(1 5
-1 4
)++(1 6
-1 n
)]1 n+2
=
(1+1 2
-1 2
-1 n+1
)<1 n+2
(12分).3 4