问题 解答题
已知数列{an}的各项均是正数,其前n项和为Sn,满足( p-1)Sn=p2-an,其中p为正常数,且p≠1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
2-logpan
(n∈N*),数列{bnbn+2}的前n项和为Tn
3
4
答案

(Ⅰ)由题设知(p-1)a1=p2-a1,解得a1=p.(2分)

∵( p-1)Sn=p2-an

∴( p-1)Sn+1=p2-an+1

两式作差得(p-1)(Sn+1-Sn)=an-an+1

(p-1)an+1=an-an+1,即an+1=

1
p
an,(4分)

∴数列{an}是首项为p,公比为

1
p
的等比数列.

an=p(

1
p
)n-1=(
1
p
)n-2.(6分)

(Ⅱ)∵bn=

1
2-logpp2-n
=
1
2-(2-n)
=
1
n
(8分),

bnbb+2=

1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)(10分),

∴Tn=b1b3+b2b4+b3b5++bnbn+2

=

1
2
[(
1
1
-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)++(
1
n
-
1
n+2
)]

=

1
2
(1+
1
2
-
1
n+1
-
1
n+2
)<
3
4
(12分).

单项选择题
问答题