问题 解答题
已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为
x=5+
3
2
t
y=
1
2
t
(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
答案

(1)对于C:由ρ=4cosθ,得ρ2=4ρcosθ,进而x2+y2=4x;

对于l:由

x=5+
3
2
t
y=
1
2
t
(t为参数),

y=

1
3
(x-5),即x-
3
y-5=0
.(5分)

(2)由(1)可知C为圆,且圆心为(2,0),半径为2,

则弦心距d=

|2-
3
×0-5|
1+3
=
3
2

弦长|PQ|=2

22-(
3
2
)
2
=
7

因此以PQ为边的圆C的内接矩形面积S=2d•|PQ|=3

7
.(10分)

单项选择题
单项选择题 B型题