问题 解答题
在平面直角坐标系中,O为坐标原点,点F、T、M、P满足
OF
=(1,0)
OT
=(-1,t)
FM
=
MT
PM
FT
PT
OF

(Ⅰ)当t变化时,求点P的轨迹C的方程;
(Ⅱ)若过点F的直线交曲线C于A,B两点,求证:直线TA、TF、TB的斜率依次成等差数列.
答案

(Ⅰ)设点P的坐标为(x,y),

FM
=
MT
,得点M是线段FT的中点,则M(0,
t
2
)
PM
=(-x,
t
2
-y)

FT
=
OT
-
OF
=(-2,t),
PT
=(-1-x,t-y),

PM
FT
,得2x+t(
t
2
-y)=0
,①

PT
OF
,得(-1-x)×0+(t-y)×1=0,∴t=y②

由①②消去t,得y2=4x即为所求点P的轨迹C的方程

(Ⅱ)证明:设直线TA,TF,TB的斜率依次为k1,k,k2,并记A(x1,y1),B(x2,y2),

k=-

t
2

设直线AB方程为x=my+1

y2=4x
x=my+1
,得y2-4my-4=0,∴
y1+y2=4m
y1y2=-4

∴y12+y22=(y1+y22-2y1y2=16m2+8,

k1+k2=

y1-t
x1+1
+
y2-t
x2+1

=

(y1-t)(
y22
4
+1)+(y2-t)(
y21
4
+1)
(
y21
4
+1)(
y22
4
+1)

=

4y1y2(y1+y2)-4t(
y21
+
y22
)+16(y1+y2)-32t
y21
y22
+4(
y21
+
y22
)+16

=-t=2k

∴k1,k,k2成等差数列

填空题
单项选择题