已知数列{an}满足:a1=1,an+1=
(Ⅰ)证明数列{bn}为等比数列,并求其通项公式; (Ⅱ)若对任意n∈N*且n≥2,不等式λ≥1+sn-1恒成立,求实数λ的取值范围; (Ⅲ)令cn=
|
(Ⅰ)因为bn=a2n,由已知可得,
bn+1=a2(n+1)=a(2n+1)+1=
+(2n+1)-1a2n+1 2
=
+2n=a2n+1 2
+2n=a2n-4n 2
a2n=1 2
bn.1 2
又a1=1,则b1=a2=
a1=1 2
.1 2
所以数列bn是首项和公比都为
的等比数列,1 2
故bn=
•(1 2
)n-1=(1 2
)n.1 2
∴数列{bn}为等比数列,并求其通项公式为:bn=(
)n,n∈N*.1 2
(Ⅱ)因为1+Sn-1=1+
+1 2
+…+1 22
=2-1 2n-1
<2(n≥2).1 2n-1
若对任意n∈N*且n≥2,不等式λ≥1+Sn-1恒成立,
则λ≥2,故λ的取值范围是[2,+∞).
(Ⅲ)因为cn=
=(n+1)((n+1)(
)n5 11 bn
)n,则10 11
cn+1-cn=(n+2)(
)n+1-(n+1)(10 11
)n=(10 11
)n[(n+2)10 11
-(n+1)]=(10 11
)n •10 11
.9-n 11
当n<9时,cn+1-cn>0,即cn<cn+1;
当n=9时,cn+1-cn=0,即cn=cn+1;
当n>9时,cn+1-cn<0,即cn>cn+1.
所以数列cn的最大项是c9或c10,
且c9=c10=
,故cn≤1010 119
.1010 119