问题
解答题
已知数列﹛an﹜满足:
(Ⅰ)求数列﹛an﹜的通项公式; ( II)设bn=log5
|
答案
(Ⅰ)当n=1时,可得
=5,故a1=1 a1 1 5
当n≥2时,由
+1 a1
+…+2 a2
=n an
(52n-1)①可得5 24
+1 a1
+…+2 a2
=n-1 an-1
(52n-2-1)②5 24
①-②得
=52n-1,所以an=n an
,经验证n=1时也符合,n 52n-1
所以数列﹛an﹜的通项公式为:an=n 52n-1
( II)bn=log5
=1-2n,所以bn+1=-1-2n,1 52n-1
所以
=1 bnbn+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),1 2n+1
因此
+1 b1b2
+…+1 b2b3 1 bnbn+1
=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1 n 2n+1