问题 解答题
已知数列﹛an﹜满足:
1
a1
+
2
a2
+…+
n
an
=
5
24
(52n-1),n∈N*

(Ⅰ)求数列﹛an﹜的通项公式;
( II)设bn=log5
an
n
,求
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
答案

(Ⅰ)当n=1时,可得

1
a1
=5,故a1=
1
5

当n≥2时,由

1
a1
+
2
a2
+…+
n
an
=
5
24
(52n-1)①可得
1
a1
+
2
a2
+…+
n-1
an-1
=
5
24
(52n-2-1)

①-②得

n
an
=52n-1,所以an=
n
52n-1
,经验证n=1时也符合,

所以数列﹛an﹜的通项公式为:an=

n
52n-1

( II)bn=log5

1
52n-1
=1-2n,所以bn+1=-1-2n,

所以

1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
),

因此

1
b1b2
+
1
b2b3
+…+
1
bnbn+1

=

1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1

单项选择题
单项选择题