问题
解答题
设正项等比数列{an}的首项a1=
(Ⅰ)求{an}的通项; (Ⅱ)求{nSn}的前n项和Tn. |
答案
(Ⅰ)由210S30-(210+1)S20+S10=0得210(S30-S20)=S20-S10,
即210(a21+a22+…+a30)=a11+a12+…+a20,
可得210•q10(a11+a12+…+a20)=a11+a12+…+a20.
因为an>0,所以210q10=1,解得q=
,因而an=a1qn-1=1 2
,n=1,2,.1 2n
(Ⅱ)由题意知Sn=
=1-
(1-1 2
)1 2n 1- 1 2
,nSn=n-1 2n
.n 2n
则数列{nSn}的前n项和Tn=(1+2++n)-(
+1 2
++2 22
),n 2n
=Tn 2
(1+2++n)-(1 2
+1 22
++2 23
+n-1 2n
).n 2n+1
前两式相减,得
=Tn 2
(1+2++n)-(1 2
+1 2
++1 22
)+1 2n
=n 2n+1
-n(n+1) 4
+
(1-1 2
)1 2n 1- 1 2
即Tn=n 2n+1
+n(n+1) 2
+1 2n-1
-2.n 2n