问题
选择题
过点A (4,3)作直线L,如果它与双曲线
|
答案
因为点A(4,3)在双曲线
-x2 4
=1的右支上,且不是右顶点,y2 3
所以要使过A(4,3)的直线与双曲线
-x2 4
=1只有一个公共点,y2 3
则直线L的斜率存在且不等于0,设其斜率为k,
则L的方程为y-3=k(x-4),
联立
,得(3-4k2)x2+(32k2-24k)x-64k2+96k-48=0.y-3=k(x-4)
-x2 4
=1y2 3
当3-4k2≠0时,
由△=(32k2-24k)2-4(3-4k2)(-64k2+96k-48)
=1024k4-1536k3+576k2+768k2-1152k+576-1024k4+1536k3-768k2
=576k2-1152k+576=0,得k=1.
所以过点A(4,3)与双曲线
-x2 4
=1相切的直线一条;y2 3
当3-4k2=0,即k=±
时,过点A(4,3)与双曲线3 2
-x2 4
=1相交于一点的直线有两条,它们是平行于双曲线渐近线的两条直线.y2 3
综上,直线L的条数是3.
故选C.