问题
解答题
等比数列{an}的前n项和为Sn,a1=
(1)求数列{an}的通项公式; (2)记bn=log3
|
答案
(1)设等比数列的公比为q,由题意a1=
,S2+2 3
a2=1,1 2
所以
+2 3
q+2 3
•1 2
q=1,即q=2 3
,1 3
因此an=a1•qn-1=
•(2 3
)n-1=1 3
.(6分)2 3n
(2)bn=log3
=log33-2n=-2n,a 2n 4
所以
=1 bn•bn+2
=1 2n•2(n+2)
•1 4
=1 n(n+2)
(1 8
-1 n
),1 n+2
Tn=
(1 8
-1 1
+1 3
-1 2
+…+1 4
-1 n-1
+1 n+1
-1 n
)=1 n+2
(1+1 8
-1 2
-1 n+1
)=1 n+2
(1 8
-3 2
-1 n+1
).(12分)1 n+2