问题 解答题
等比数列{an}的前n项和为Sna1=
2
3
,且S2+
1
2
a2=1

(1)求数列{an}的通项公式;
(2)记bn=log3
a2n
4
,求数列{
1
bnbn+2
}
的前n项和Tn
答案

(1)设等比数列的公比为q,由题意a1=

2
3
S2+
1
2
a2=1

所以

2
3
+
2
3
q+
1
2
2
3
q=1,即q=
1
3

因此an=a1qn-1=

2
3
•(
1
3
)n-1=
2
3n
.(6分)

(2)bn=log3

a2n
4
=log33-2n=-2n,

所以

1
bnbn+2
=
1
2n•2(n+2)
=
1
4
1
n(n+2)
=
1
8
(
1
n
-
1
n+2
),

Tn=

1
8
(
1
1
-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)=
1
8
(1+
1
2
-
1
n+1
-
1
n+2
)=
1
8
(
3
2
-
1
n+1
-
1
n+2
)
.(12分)

判断题