问题
解答题
在数列{an}中,a1=3,a2=3,且数列{an+1+an}是公比为2的等比数列,数列{an+1-an}是公比为-1的等比数列. (1)求数列{an}的通项公式; (2)求证:当k为正奇数时,
(3)求证:当n∈N+时,
|
答案
(1)在数列{an}中,a1=3,a2=3,
∵数列{an+1+an}是公比为2的等比数列,
∴an+1+an=(a2+a1)•2n-1=3•2n,①
∵数列{an+1-2an}是公比为-1的等比数列,
∴an+1-2an=(a2-2a1)(-1)n-1=3(-1)n,②
①-②得3an=3•2n+3•(-1)n-1,
∴an=2n+(-1)n-1…(5分)
(2)证明:当k为正奇数时,
+1 ak
=1 ak+1
+1 2k+1 1 2k+1-1
=
<3•2k 22k+1+2k-1
,3 2k+1
∴当k为正奇数时,
+1 ak
<1 ak+1
…(8分)3 2k+1
(3)证明:当n∈N*时,
∵
+1 ak
<1 ak+1
,3 2k+1
∴
+1 a1
+1 a2
+…+1 a3 1 a2n-1
=(
+1 a1
)+(1 a2
+1 a3
)+…+(1 a4
+1 a2n-1
)1 a2n
<
+3 2 2
+…+3 2 4 3 2 2n
=3×
(1-1 4
) 1 4n 1- 1 4
=1-
<1.1 4n