问题
解答题
已知等比数列{an}中,a2=2,a5=128, (1)求数列{an}的通项公式 (2)若bn=log2an,求数列{bn}的前n项和Sn (3)设Tn=
|
答案
(1)设公比为q,依题意a1q=2 a1q4 =128
解得a1=
,q=41 2
∴an=
×4n-1=22n-3 (n∈N*)1 2
(2)bn=log2an=log2(22n-3)=2n-3
∴数列{bn}为首项为-1,公差为2的等差数列
∴Sn=
=n(n-2)n(-1+2n-3) 2
(3)∵
=Sn n
=n-2n(n-2) n
∴Tn=
+S1 1
+S2 2
+…+S3 3
=(1-2)+(2-2)+(3-2)+…+(n-2)=Sn n
=n(-1+n-2) 2 n(n-3) 2