问题
解答题
已知等比数列{an}满足a3=12,a8=
(I)求数列{an}的通项an; (Ⅱ)求数列{bn}的通项bn; (Ⅲ)若cn=an+
|
答案
(I)因为{an}是等比数列,设首项为a1和公比q,由已知得出
,两式相除得出q5=a1q2=12 a1q7= 3 8
,1 32
∴q=
,从而a1=48.通项公式an=48×(1 2
)n-11 2
(Ⅱ)bn+1=bn+(2n-1)变形为bn+1-bn=2n-1,
当n≥2时,bn=b1+( b2-b1)+(b3-b2)+…(bn-bn-1)
=-1+1+3+…+(2n-3)
=-1+[1+(2n-3)](n-1) 2
=-1+(n-1)2
=n2-2n
当n=1时,b1=-1,也满足.
所以数列{bn}的通项,bn=n2-2n
(Ⅲ)cn=an+
=48×(bn n
)n-1+(n-2)1 2
Tn=48×
+1-(
)n1 2 1- 1 2 [-1+(n-2)]•n 2
=96×[1-(
)n]+1 2 n2-3n 2