问题 解答题
已知等比数列{an}满足a3=12,a8=
3
8
,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n=1,2,3…).
(I)求数列{an}的通项an
(Ⅱ)求数列{bn}的通项bn
(Ⅲ)若cn=an+
bn
n
,求数列{cn}的前n项和Tn
答案

(I)因为{an}是等比数列,设首项为a1和公比q,由已知得出

a1q2=12
a1q7=
3
8
,两式相除得出q5=
1
32

∴q=

1
2
,从而a1=48.通项公式an=48×(
1
2
)n-1

(Ⅱ)bn+1=bn+(2n-1)变形为bn+1-bn=2n-1,

当n≥2时,bn=b1+( b2-b1)+(b3-b2)+…(bn-bn-1

=-1+1+3+…+(2n-3)

=-1+

[1+(2n-3)](n-1)
2

=-1+(n-1)2

=n2-2n

当n=1时,b1=-1,也满足.

所以数列{bn}的通项,bn=n2-2n

(Ⅲ)cn=an+

bn
n
=48×(
1
2
)n-1
+(n-2)

Tn=48×

1-(
1
2
)n
1-
1
2
+
[-1+(n-2)]•n
2

=96×[1-(

1
2
)n]+
n2-3n
2

单项选择题
填空题