问题
解答题
等比数列{an}单调递增,且满足:a1+a6=33,a3a4=32. (1)求数列{an}的通项公式; (2)数列{bn}满足:b1=1且n≥2时,a2,abn,a2n-2成等比数列,Tn为{bn}前n项和,cn=
|
答案
(1)由题意,数列{an}单增,所以,
⇒a1+a6=33 a1a6=a3a4=32 a1=1 a6=32
∴q=2,∴an=2n-1;
(2)由题,abn2=a2a2n-2⇒(2bn-1)2=2•22n-3⇒2(bn-1)=2n-2⇒bn=n
∴Tn=n(n+1) 2
∴cn=
+n+2 n
=1+n n+2
+1-2 n
=2+2(2 n+2
-1 n
)1 n+2
当n≥2时,c1+c2++cn=2n+2(1+
-1 2
-1 n+1
)0<1+1 n+2
-1 2
-1 n+1
<1 n+2 3 2
∴2n<c1+c2+…+cn<2n+3
当n=1时,2<c1=3+
<51 3
所以对任意的n∈N*,2n<c1+c2+…+cn<2n+3.