已知数列{an}满足a1=3,
(Ⅰ)求数列{bn}的通项公式. (Ⅱ)若(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,求实数t的取值范围; (Ⅲ)记cn=
|
(Ⅰ)∵
=an(n∈N*),∴bn=2-2an+1 an+1-3
=an-2 an+1
=4bn+1,4(an+1-2) an+1+1
∴
=bn+1 bn 1 4
∵a1=3,b1=1 4
∴数列{bn}是以
为首项,1 4
为公比的等比数列1 4
∴bn=
;1 4n
(Ⅱ)∵bn=
,∴an=an-2 an+1 2•4n+1 4n-1
∵(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,
∴t≤
=2n+4n+9 2n
对任意n∈N*恒成立9 2n
∵y=m+
(m>0)在(0,3)上单调递减,在(3,+∞)上单调递增9 m
∴(2n+
)min=min{2+9 2n
,4+9 2
}=9 4 25 4
∴t≤25 4
∴实数t的取值范围是(-∞,
];25 4
(Ⅲ)∵cn=
=1-3 an+1
,1 4n
猜想(1-
)(1-1 4
) … (1-1 42
)≥1-(1 4n
+1 4
+ …+1 42
)1 4n
用数学归纳法证明:
①n=1时,左边=
=右边;n=2时,左边=3 4
,右边=45 64
,左边>右边;11 16
②假设n=k(k≥2)时结论成立,即(1-
)(1-1 4
) … (1-1 42
)≥1-(1 4k
+1 4
+ …+1 42
)1 4k
则n=k+1时,左边=(1-
)(1-1 4
) … (1-1 42
)(1-1 4k
)≥[1-(1 4k+1
+1 4
+ …+1 42
)](1-1 4k
)1 4k+1
>1-(
+1 4
+ …+1 42
)=右边1 4k+1
由①②知,猜想(1-
)(1-1 4
) … (1-1 42
)≥1-(1 4n
+1 4
+ …+1 42
)成立1 4n
又
+1 4
+ …+1 42
<1 4n
=1 4 1- 1 4 1 3
∴c1•c2•c3…cn=(1-
)(1-1 4
) … (1-1 42
)≥1-(1 4n
+1 4
+ …+1 42
)>1-1 4n
>1 3 7 12
∴c1•c2•c3…cn>7 12