问题
解答题
已知数列{an}满足a1=
(1)求证:数列{
(2)设bn=an•sin
|
答案
(1)由2an+an-1=(-1)nan•an-1
得
=(-1)n-1 an
(n≥2,n∈N*)2 an-1
∴
+(-1)n=(-2)•[1 an
+(-1)n-1]1 an-1
又∵
+(-1)=31 a1
∴数列[
+(-1)n]是首项为3,公比为-2的等比数列,1 an
从而
+(-1)n=3(-2)n-11 an
即an=
;1 3(-2)n-1-(-1)n
(2)∵sin
=(-1)n-1(2n-1)π 2
∴bn=
=(-1)n-1 3•(-2)n-1-(-1)n 1 3•2n-1+1
则Tn=
+1 3+1
++1 3×2+1
<1 3×2n-1+1
+1 3
+1 3×2
+1 3×22
++1 3•23 1 3•2n-1
=
(1+1 3
+1 2
+1 22
++1 23
)1 2n
=
×1 3
=1- 1 2n 1- 1 2
×(1-2 3
)<1 2n
.2 3