问题 解答题

已知等比数列{an}的前n项和为Sn=2n-c

(1)求c的值并求数列{an}的通项公式;

(2)若bn=n•an,求数列{bn}的前n项和Tn

答案

(1)∵等比数列{an}的前n项和为Sn=2n-c

∴a1=S1=2-c,

a2=S2-S1=(4-c)-(2-c)=2,

a3=S3-S2=(8-c)-(4-c)=4,

∵{an}是等比数列,

a22=a1a3,即22=(2-c)×4,

解得c=1.

∵q=

a3
a2
=
4
2
=2.a1=2-1=1,

∴an=2n-1

(2)∵an=2n-1

∴bn=n•an=n•2n-1

∴Tn=1+2•2+3•2n+…+n•2n-1,①

∴2Tn=1•2+2•22+…+(n-1)•2n-1+n•2n,②

①-②,得-Tn=1+2+22+…+2n-1-n•2n

=

1-2n
1-2
-n•2n

=2n-1-n•2n

∴Tn=(n-1)•2n+1.

单项选择题
填空题