问题
解答题
已知等比数列{an}的前n项和为Sn=2n-c.
(1)求c的值并求数列{an}的通项公式;
(2)若bn=n•an,求数列{bn}的前n项和Tn.
答案
(1)∵等比数列{an}的前n项和为Sn=2n-c,
∴a1=S1=2-c,
a2=S2-S1=(4-c)-(2-c)=2,
a3=S3-S2=(8-c)-(4-c)=4,
∵{an}是等比数列,
∴a22=a1•a3,即22=(2-c)×4,
解得c=1.
∵q=
=a3 a2
=2.a1=2-1=1,4 2
∴an=2n-1.
(2)∵an=2n-1,
∴bn=n•an=n•2n-1,
∴Tn=1+2•2+3•2n+…+n•2n-1,①
∴2Tn=1•2+2•22+…+(n-1)•2n-1+n•2n,②
①-②,得-Tn=1+2+22+…+2n-1-n•2n
=
-n•2n1-2n 1-2
=2n-1-n•2n,
∴Tn=(n-1)•2n+1.