问题
解答题
已知数列{an}满足:a1=1,an+1=
(1)求a2、a3、a4、a5; (2)设bn=a2n-2,n∈N,求证{bn}是等比数列,并求其通项公式; (3)在(2)条件下,求证数列{an}前100项中的所有偶数项的和S100<100. |
答案
(1)a2=
,a3=-3 2
,a4=5 2
,a5=-7 4
;25 4
(2)∵
=bn+1 bn
=a2n+2-2 a2n-2
a2n+1 +2n+1-21 2 a2n-2
=
=
(a2n-4n)+2n-11 2 a2n-2
=
a2n-11 2 a2n-2
,1 2
又∵b1=a2-2=-
,1 2
∴数列{bn}是等比数列,
且bn=(-
)(-1 2
)n-1=(-1 2
)n;1 2
(3)由(2)得:
a2n=bn+2=2-(
)n (n=1,2,…,50)1 2
∴S100=a2+a4+…+a100=2×50-
=99+
(1-1 2
)1 250 1- 1 2
<100.1 299