问题
解答题
设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn.
答案
(I)在数列{an}中,前n项和为Sn,且点(an+1,Sn)在直线2x+y-2=0上;
所以,2an+1+Sn-2=0,则
,
⇒2an+1=an(n≥2)2an+1+Sn-2=0 2an+Sn-1-2=0(n≥2)
(*),又∵2a2+s1-2=0,∴a2=∴
=an+1 an
(n≥2)1 2
,∴1 2
=a2 a1
满足关系式(*),1 2
∴数列{an}的通公式为:an=(
)n-1;1 2
(II)由(I)知,bn=(n+1)(
)n-1,数列{bn}的前n项和Tn有:1 2
Tn=2×
+3×1 20
+4×1 21
+…+(n+1)1 22
①;1 2n-1
∴
Tn=2×1 2
+3×1 21
+4×1 22
+…+(n+1)1 23
②;1 2n
①-②,得
Tn=2×1 2
+1 20
+1 21
+1 22
+…+1 23
-(n+1)1 2n-1 1 2n
=1+
-1×(1-
) 1 2n 1- 1 2
=3-n+1 2n
;n+3 2n
∴Tn=6-
.n+3 2n-1