问题 解答题

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.

(Ⅰ)求数列{an}的通公式;

(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn

答案

(I)在数列{an}中,前n项和为Sn,且点(an+1,Sn)在直线2x+y-2=0上;

所以,2an+1+Sn-2=0,则

2an+1+Sn-2=0
2an+Sn-1-2=0(n≥2)
⇒2an+1=an(n≥2)

an+1
an
=
1
2
(n≥2)
(*),又∵2a2+s1-2=0,∴a2=
1
2
,∴
a2
a1
=
1
2
满足关系式(*),

∴数列{an}的通公式为:an=(

1
2
)n-1

(II)由(I)知,bn=(n+1)(

1
2
)n-1,数列{bn}的前n项和Tn有:

Tn=2×

1
20
+3×
1
21
+4×
1
22
+…+(n+1)
1
2n-1
①;

1
2
Tn=2×
1
21
+3×
1
22
+4×
1
23
+…+(n+1)
1
2n
②;

①-②,得

1
2
Tn=2×
1
20
+
1
21
+
1
22
+
1
23
+…+
1
2n-1
-(n+1)
1
2n

=1+

1×(1- 
1
2n
1-
1
2
-
n+1
2n
=3-
n+3
2n

∴Tn=6-

n+3
2n-1

单项选择题
单项选择题 B1型题