问题
填空题
如果椭圆
|
答案
设弦的端点为A(x1,y1)、B(x2,y2),代入椭圆方程,得9x12+36y12=36×9①,9x22+36y22=36×9②;①-②,得9(x1+x2)(x1-x2)+36(y1+y2)(y1-y2)=0;由中点坐标
=4,x1+x2 2
=2,代入上式,得y1+y2 2
36(x1-x2)+72(y1-y2)=0,∴直线斜率为k=
=-y2-y1 x2-x1
,所求弦的直线方程为:y-2=-1 2
(x-4),即x+2y-8=0.1 2
故答案为:x+2y-8=0.