问题 解答题

已知等比数列{an}中,a2=2,a5=128.若bn=log2an,数列{bn}前n项的和为Sn

(Ⅰ)若Sn=35,求n的值;

(Ⅱ)求不等式Sn<2bn的解集.

答案

(Ⅰ)∵a2=a1q=2,a5=a1q4=128得q3=64,

∴q=4,a1=

1
2

∴an=a1qn-1=

1
2
×4n-1=22n-3,∴bn=log2an=log222n-3=2n-3

∵bn+1-bn=[2(n+1)-3]-(2n-3)=2

∴{bn}是以b1=-1为首项,2为公差数列;

∴Sn=

(-1+2n-3)n
2
=35,即n2-2n-35=0,可得(n-7)(n+5)=0,

即n=7;

(Ⅱ)∵Sn-bn=n2-2n-(2n-3)=n2-4n+3<0

∴3-

3
<n<3+
3
,∵n∈N+

∴n=2,3,4,即所求不等式的解集为{2,3,4};

填空题
单项选择题