问题 解答题
已知数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,记所有可能的乘积aiaj(1≤i≤j≤n)的和为Tn
(1)求{an}的通项公式;
(2)求Tn的表达式;
(3)求证:
n-1
4
T1
T2
+
T2
T3
+
T3
T4
+
…+
Tn
Tn+1
n
4
答案

(1)∵数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n

a1
2
+
a2
22
+
a3
23
+…+
an
2n
=n,

当n=1时,a1=2.

当n≥2时,

a1
2
+
a2
22
+
a3
23
+…+
an
2n
=n,

a1
2
+
a2
2 2
+
a3
23
+…+
an-1
2n-1
=n-1,

两式相减,得

an
2n
=1,

an=2n

(2)∵aiaj(1≤i≤j≤n)的和为Tn

∴Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan

=(23-22)+(25-23)+(27-24)+…+(22n+1-2n+1

=

23-22n+3
1-4
-(2n+2-4)

=

4
3
(2n+1-1)(2n-1).

(3)∵

Tn
Tn+1
=
4
3
(2n+1-1)(2n-1)
4
3
(2n+2-1)(2n+1-1)

=

2n-1
2n+2-1

=

2n-1
4(2n-1)+3
1
4

T1
T2
+
T2
T3
+
T3
T4
+…+
Tn
Tn+1
1
4
+
1
4
+
1
4
+…+
1
4
=
n
4

Tn
Tn+1
=
2n-1
2n+2-1
=
1
4
-
3
4
1
2n+2-1

=

1
4
-
3
4
1
3•2n+2n-1

1
4
-
3
4
1
3•2n

=

1
4
-
1
2 n+2

T1
T2
+
T2
T3
+
T3
T4
+…+
Tn
Tn+1
>(
1
4
-
1
2 3
)+(
1
4
-
1
2 4
)+…+(
1
4
-
1
2 n+2

=

n
4
-(
1
2 3
+
1
2 4
+… +
1
2 n+2
)

=

n
4
-(
1
4
-
1
2 n+2
)>
n-1
4

n-1
4
T1
T2
+
T2
T3
+
T3
T4
+
…+
Tn
Tn+1
n
4

填空题
完形填空