问题
解答题
已知数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,记所有可能的乘积aiaj(1≤i≤j≤n)的和为Tn. (1)求{an}的通项公式; (2)求Tn的表达式; (3)求证:
|
答案
(1)∵数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,
∴
+a1 2
+a2 22
+…+a3 23
=n,an 2n
当n=1时,a1=2.
当n≥2时,
+a1 2
+a2 22
+…+a3 23
=n,an 2n
+a1 2
+a2 2 2
+…+a3 23
=n-1,an-1 2n-1
两式相减,得
=1,an 2n
∴an=2n.
(2)∵aiaj(1≤i≤j≤n)的和为Tn,
∴Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)
=(23-22)+(25-23)+(27-24)+…+(22n+1-2n+1)
=
-(2n+2-4)23-22n+3 1-4
=
(2n+1-1)(2n-1).4 3
(3)∵
=Tn Tn+1
(2n+1-1)(2n-1)4 3
(2n+2-1)(2n+1-1)4 3
=2n-1 2n+2-1
=
<2n-1 4(2n-1)+3
,1 4
∴
+T1 T2
+T2 T3
+…+T3 T4
<Tn Tn+1
+1 4
+1 4
+…+1 4
=1 4
,n 4
∵
=Tn Tn+1
=2n-1 2n+2-1
-1 4
•3 4 1 2n+2-1
=
-1 4
•3 4 1 3•2n+2n-1
>
-1 4
•3 4 1 3•2n
=
-1 4
,1 2 n+2
∴
+T1 T2
+T2 T3
+…+T3 T4
>(Tn Tn+1
-1 4
)+(1 2 3
-1 4
)+…+(1 2 4
-1 4
)1 2 n+2
=
-(n 4
+1 2 3
+… +1 2 4
)1 2 n+2
=
-(n 4
-1 4
)>1 2 n+2
,n-1 4
∴
<n-1 4
+T1 T2
+T2 T3
+…+T3 T4
<Tn Tn+1
.n 4