问题 解答题
已知B为抛物线y2=2px(p>0)上的动点(除顶点),过B作抛物线准线的垂线,垂足计
为C.连接CO并延长交抛物线于A,(O为原点)
(1)求证AB过定点Q.
(2)若M(1,
P
),试确定B点的位置,使|BM|+|BQ|取得最小值,并求此最小值.
答案

(1)设B点坐标为(

yB2
2p
,yB),则C为(-
p
2
,yB

那么直线CO的方程为y=-

yB
p
x,

与抛物线联立,求解,得A点坐标为(

p3
2yB2
,-p2 ×yB ),

故直线AB的方程为 2pyBx-(yB2-p2)y-p2•yB=0,

令x=

p
2
,则y=0,

故直线AB过定点Q(

p
2
,0).

(2)由(1)得,Q为抛物线焦点,

故|BQ|=|BC|,

根据三角形两边之和大于第三边,从而当yB=p

1
2
时,即B(
1
2
p
)时,

|BM|+|BQ|=|BC|+|BM|=|CM|最小,

最小值为

p
2
+1.

单项选择题
单项选择题