问题 解答题

若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.

(1)求数列S1,S2,S4的公比;

(2)若S2=4,求{an}的通项公式;

(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn

答案

(1)设等差数列{an}的公差为d,

S22
=S1S4得出(2a1+d)2=a1(4a1+6d),化为d=2a1

S2
S1
=
2a1+d
a1
=4,

∴数列S1,S2,S4的分比为4.

(2)由S2=4=2a1+d=4a1得出a1=1,d=2,

∴an=2n-1.

(3)由(2)可得bn=2n-1-14=2n-15.

令bn=2n-15>0,

得n>

15
2

∴当n≤7时,Tn=-[(2-15)+(4-15)+…+(2n-15)]=-(

n(n+1)
2
-15n)=14n-n2

当n≥8时,Tn=-b1-b2-…-b7+b8+…+bn

=b1+b2+…+bn-2(b1+b2+…+b7

=

n(-13+2n-15)
2
+2T7

=n2-14n+98.

Tn=

14n-n2,n≤7
n2-14n+98,n≥8

单项选择题
单项选择题