问题
解答题
若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn.
答案
(1)设等差数列{an}的公差为d,
由
=S1S4得出(2a1+d)2=a1(4a1+6d),化为d=2a1.S 22
得
=S2 S1
=4,2a1+d a1
∴数列S1,S2,S4的分比为4.
(2)由S2=4=2a1+d=4a1得出a1=1,d=2,
∴an=2n-1.
(3)由(2)可得bn=2n-1-14=2n-15.
令bn=2n-15>0,
得n>
,15 2
∴当n≤7时,Tn=-[(2-15)+(4-15)+…+(2n-15)]=-(2×
-15n)=14n-n2;n(n+1) 2
当n≥8时,Tn=-b1-b2-…-b7+b8+…+bn
=b1+b2+…+bn-2(b1+b2+…+b7)
=
+2T7n(-13+2n-15) 2
=n2-14n+98.
∴Tn=
.14n-n2,n≤7 n2-14n+98,n≥8