问题 解答题
已知{an}为递减的等比数列,且{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当bn=
1-(-1)n
2
an
时,求证:b1+b2+b3+…+b2n-1
16
3
答案

(Ⅰ)∵{an}是递减数列,∴数列{an}的公比q是正数,

∵{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4},

∴a1=4,a2=2,a3=1,∴q=

a2
a1
=
1
4
=
1
2

an=a1qn-1=

8
2n

(Ⅱ)由(1)得,bn=

1-(-1)n
2
an=
8[1-(-1)n]
2n+1

当n=2k(k∈N*)时,bn=0,

当n=2k-1(k∈N*)时,bn=an

bn=

0,(n=2k,k∈N*)
an,(n=2k-1,k∈N*).

∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1

=

4[1-(
1
4
)
n
]
1-
1
4

=

16
3
[1-(
1
4
)n]
16
3

单项选择题
单项选择题