问题
解答题
已知{an}为递减的等比数列,且{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4}. (Ⅰ)求数列{an}的通项公式; (Ⅱ)当bn=
|
答案
(Ⅰ)∵{an}是递减数列,∴数列{an}的公比q是正数,
∵{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4},
∴a1=4,a2=2,a3=1,∴q=
=a2 a1
=1 4
,1 2
∴an=a1qn-1=
.8 2n
(Ⅱ)由(1)得,bn=
an=1-(-1)n 2
,8[1-(-1)n] 2n+1
当n=2k(k∈N*)时,bn=0,
当n=2k-1(k∈N*)时,bn=an,
即bn=0,(n=2k,k∈N*) an,(n=2k-1,k∈N*).
∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1
=4[1-(
)n]1 4 1- 1 4
=
[1-(16 3
)n]<1 4
.16 3