问题
解答题
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*) (1)求数列{an}的通项公式an; (2)若数列{bn}满足bn=log2(an+2),而Tn为数列{
|
答案
(1)当n∈N*时,Sn=2an-2n,①则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
=2.an+2 an-1+2
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
=bn an+2
,n+1 2n+1
则Tn=
+2 22
+…+3 23
,③n+1 2n+1
Tn=1 2
+…+2 23
+n 2n+1
,④n+1 2n+2
③-④,得
Tn=1 2
+2 22
+1 23
+…+1 24
+1 2n+1 n+1 2n+2
=
+1 4
-
(1-1 4
)1 2n 1- 1 2 n+1 2n+2
=
+1 4
-1 2
-1 2n+1 n+1 2n+2
=
-3 4 n+3 2n+2
∴Tn=
-3 2
(14分)n+3 2n+1