问题 解答题
中心在原点,一焦点为F1(0,5
2
)的椭圆被直线y=3x-2截得的弦的中点横坐标是
1
2
,求此椭圆的方程.
答案

设椭圆:

y2
a2
+
x2
b2
=1(a>b>0),则a2-b2=50①

又设A(x1,y1),B(x2,y2),弦AB中点(x0,y0

∵x0=

1
2
,∴y0=
3
2
-2=-
1
2

y21
a2
+
x21
b2
=1
y22
a2
+
x22
b2
=1
y21
-
y22
a2
=-
x21
-
x22
b2
kAB=
y1-y2
x1-x2
=-
a2
b2
x0
y0
=3⇒a2=3b2

解①,②得:a2=75,b2=25,

故椭圆的方程为:

y2
75
+
x2
25
=1.

选择题
名词解释