问题 填空题

抛物线y=-x2+4上存在两点关于直线y=kx+3对称,则k的取值范围是______.

答案

设两对称点为A(x1,y1),B(x2,y2),则直线AB与直线y=kx+3对称,

易知k≠0,设AB方程为:y=-

1
k
x+m,

y=-
1
k
x+m
y=-x2+4
x2-
1
k
x+m-4=0
,则△=(-
1
k
)2-4(m-4)>
0①,

x1+x2=

1
k
,则AB中点横坐标为
1
2k
,代入y=kx+3得y=k•
1
2k
+3=
7
2
,所以AB中点坐标为(
1
2k
7
2
),

又中点在直线AB上,所以

7
2
=-
1
k
1
2k
+m,即
7
2
=-
1
2k2
+m②,

由②得m=(

7
2
+
1
2k2
),代入①解得k<-
2
2
或k<-
2
2

所以k的取值范围为:k<-

2
2
或k<-
2
2

故答案为k<-

2
2
或k<-
2
2

单项选择题
单项选择题