问题
解答题
已知椭圆E:
(Ⅰ)求椭圆E的方程; (Ⅱ)若圆:x2+y2=
|
答案
(Ⅰ)设A(x0,y0)B(-x0,y0)F(c,0)(c2=a2+b)
则|AF|+|BF|=2a=2
∴a=2
-----------------------------------------(1分)|AB|=2
=2(2x0)2+(2y0)2
=2x02+(1-
)b2x02 a2 b2+ c2x02 a2
∵0≤x02≤a2∴|AB|min=2b=2∴b=1所以有椭圆E的方程为
+y2=1-----------------(5分)x2 2
(Ⅱ)由题设条件可知直线的斜率存在,设直线L的方程为y=kx+m
L与圆x2+y2=
相切,2 3
∴
=|m| 1+k2 6 3
∴m2=
(k2+1)-----------------(7分)2 3
L的方程为y=kx+m代入
+y2=1中得:(1+2k2)x2+4kmx+2m2-2=0,x2 2
△=8(2k2+1-m2)>0令P(x1,y1),Q(x2,y2),
x1+x2=
①-4km 1+2k2
x1x2=
②2m2-2 1+2k2
y1y2=k2x1x2+km(x1+x2)+m2=
③--------------------(10分)m2-2k2 1+2k2
•OP
=x1x2+y1y2=OQ
+2m2-2 1+2k2
=m2-2k2 1+2k2
=03m2-2k2-2 1+2k2
∴
⊥OP
------------------------------------------------------(12分)OQ