问题
解答题
已知等比数列{an},其前n项和为Sn,且a1+a3=5,a2+a4=10. (1)求数列{an}的通项公式. (2)若bn=1+log4an,求数列{
|
答案
(1)设等比数列{an}的公比为q,
由题意得,
,解得a1=1,q=2,a1+a1q2=5 a1q+a1q3=10
∴an=2n-1,
(2)由(1)得,bn=1+log4an=1+
=log 2n-14
,n+1 2
∴
=1 bnbn+1
=4(4 (n+1)(n+2)
-1 n+1
),1 n+2
设数列{
}的前n项和为Tn,1 bnbn+1
∴Tn=4[(
-1 2
)+(1 3
-1 3
)+(1 4
-1 4
)+…+(1 5
-1 n+1
)]1 n+2
=4(
-1 2
)=1 n+2
.2n n+2