问题 解答题
已知数列{an}满足a1=a(a>2),an+1=
2+an
,n∈N*
(1)求证:an+1<an
(2)若a=
3
2
2
,且数列{bn}满足an=bn+
1
bn
,bn>1,求证:数列{lgbn}是等比数列,并求数列{an}的通项式;
(3)若a=2011,求证:当n≥12时,2<an<2+
1
2011
恒成立.(参考数据210=1024)
答案

(1)an+1-an=

2+an
-
2+an-1

=

an-an-1
2+an
+
2+an-1
(n≥2),

上式表明an+1-an与an-an-1同号,

∴an+1-an,an-an-1,an-1-an-2,…,a2-a1同号,

∵a>2,

∴a2-a-2=(a-2)(a+1)>0,

∴a2>a+2,

a2=

a+2
<a,a2-a1<0.

∴an+1-an<0,

故an+1<an

(2)∵an+1=bn+1+

1
bn+1

=

2+an

=

2+bn+
1
bn

bn+12+

1
bn+1 2
=bn+
1
bn

bn+14-(bn+

1
bn
)bn+1 2+1=0,

注意到bn>1,

f(x)=x+

1
x
(x>0),f(x)=1-
1
x2
>0

∴f(x)在x>1时为增函数,而f(bn+12)=f(bn),

bn+12=bn

∴2lgbn+1=lgbn

lgbn+1
lgbn
=
1
2

∴数列{lgbn}是等比数列,

a1=b1+

1
b1
=
3
2
2
b1=
2
lgb1=lg
2

lgbn=(

1
2
)n-1•lg
2
=(
1
2
)
n
•lg2

bn=2(

1
2
)n

an=bn+

1
bn
=2(
1
2
)
n
+2-(
1
2
)
n

(3)∵当n≥2时,an-2=

2+an-1
-2=
an-1-2
2+an-1
+2

上式表明:an-2与an-1-2同号,对一切n≥2成立,

∴an-2,an-1-2,…,a2-2,a1-2同号,

而a1-2>0,

∴an-2>0,an-1-2>0,

∵n≥2时,an-2=

an-1-2
2+an-1+2
an-1-2
2+2
+2
=
an-1-2
4

an-2
an-1-2
1
4

an-2
an-1-2
an-1-2
an-2-2
a3-2
a2-2
a2-2
a1-2

=

an-2
a1-2
(
1
4
)
n-1

∴0<an-2<(a1-2)•(

1
4
)n-1

当a1=2011,n=12时,

a12-2=(2011-2)×(

1
4
)12-1=
2009
222
211
222
=
1
2 11
1
2011

a12<2+

1
2011

∵an>an+1

∴当n≥12时,2<an<2+

1
2011
恒成立.

选择题
填空题