问题
填空题
已知A,B是椭圆
|
答案
∵A,B是椭圆
+x2 a2
=1(a>b>0)和双曲线y2 b2
-x2 a2
=1(a>0,b>0)的公共顶点,∴(不妨设)A(-a,0),B(a,0).y2 b2
设P(x1,y1),M(x2,y2),∵
+AP
=λ(BP
+AM
),其中λ∈R,∴(x1+a,y1)+(x1-a,y1)=λ[(x2+a,y2)+(x2-a,y2)],化为x1y2=x2y1.BM
∵P、M都异于A、B,∴y1≠0,y2≠0.∴
=x1 y1
.x2 y2
由k1+k2=
+y1 x1+a
=5,化为y1 x1-a
=5,(*)2x1y1 x12-a2
又∵
-x12 a2
=1,∴y12 b2
=x12-a2 a2
,代入(*)化为y12 b2
=x1 y1
.5a2 2b2
k3+k4=
+y2 x2+a
=y2 x2-a
,又2x2y2 x22-a2
+x22 a2
=1,y22 b2
∴
=-x22-a2 a2
,y22 b2
∴k3+k4=-
×2b2 a2
=-x2 y2
×2b2 a2
=-5.5a2 2b2
故答案为-5.