问题 填空题
已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1,k2,k3,k4,k1+k2=5,则k3+k4=______.
答案

∵A,B是椭圆

x2
a2
+
y2
b2
=1(a>b>0)和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点,∴(不妨设)A(-a,0),B(a,0).

设P(x1,y1),M(x2,y2),∵

AP
+
BP
=λ(
AM
+
BM
),其中λ∈R,∴(x1+a,y1)+(x1-a,y1)=λ[(x2+a,y2)+(x2-a,y2)],化为x1y2=x2y1

∵P、M都异于A、B,∴y1≠0,y2≠0.∴

x1
y1
=
x2
y2

由k1+k2=

y1
x1+a
+
y1
x1-a
=5,化为
2x1y1
x12-a2
=5
,(*)

又∵

x12
a2
-
y12
b2
=1,∴
x12-a2
a2
=
y12
b2
,代入(*)化为
x1
y1
=
5a2
2b2

k3+k4=

y2
x2+a
+
y2
x2-a
=
2x2y2
x22-a2
,又
x22
a2
+
y22
b2
=1

x22-a2
a2
=-
y22
b2

∴k3+k4=-

2b2
a2
×
x2
y2
=-
2b2
a2
×
5a2
2b2
=-5.

故答案为-5.

单项选择题
单项选择题