问题
解答题
已知数列{an}的前n项和是Sn,a1=3,且an+1=2Sn+3,数列{bn}为等差数列,且公差d>0,b1+b2+b3=15. (Ⅰ)求数列的通项公式; (Ⅱ)若
|
答案
(Ⅰ)由an+1=2Sn+3,an=2Sn-1+3(n≥2)
得:an+1-an=2an∴an+1=3an(n≥2)
∴
=3(n≥2)(2分)an+1 an
a2=2a1+3=9,
=3,(3分)a2 a1
∴
=3(n∈N*)an+1 an
∴an=3n(4分)
(Ⅱ)由b1+b2+b3=15,得b2=5(5分)
则b1=5-d,b3=5+d,
+b1=6-d,a1 3
+b2=8,a2 3
+b3=14+da3 3
则有:64=(6-d)(14+d)即:d2+8d-20=0(6分)
d=2或d=-10∵d>0∴d=2(7分)
∴bn=b1+(n-1)d=3+2(n-1)=2n+1(8分)
∴Tn=
+1 b1b2
+…+1 b2b3
=1 bnbn+1
+1 3×5
+…+1 5×7 1 (2n+1)(2n+3)
=
(1 2
-1 3
+1 5
-1 5
+…+1 7
-1 2n+1
)=1 2n+3
(1 2
-1 3
)=1 2n+3
(10分)n 6n+9