问题
解答题
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k. (1)求k的值及数列{an}的通项公式; (2)若数列{bn}满足
|
答案
解(1)当n≥2时由an=Sn-Sn-1=3n+k-3n-1-k=2•3n-1…(2分)
∵a1=S1=3+k,
∴k=-1,…(4分)
(2)由
=(4+k)anbn,可得bn=an+1 2
,n 2•3n-1
bn=
•3 2
,…(6分)n 3n
∴Tn=
(3 2
+1 3
+2 32
+…+3 33
)…(7分)n 3n
Tn=1 3
(3 2
+1 32
+2 33
+…+3 34
)…(9分)n 3n+1
两式相减可得,
Tn=2 3
(3 2
+1 3
+1 32
+…+1 33
-1 3n
)n 3n+1
=
×[3 2
-
(1-1 3
)1 3n 1- 1 3
]n 3n+1
=
×[3 2
-1- 1 3n 2
]…(10分)n 3n+1
∴Tn=
(9 4
-1 2
-1 2•3n
)…(12分)n 3n+1