问题
填空题
过抛物线y2=4x的焦点F作直线交抛物线于A(x1,y1),B(x2,y2),则x1x2=______.
答案
∵抛物线y2=4x的焦点F(1,0),
∴设直线AB:y=k(x-1),
由
,得k2x2-2k2x-4x+k2=0,y2=4x y=k(x-1)
∵A(x1,y1),B(x2,y2),
∴x1x2=
=1.k2 k2
故答案为:1.
过抛物线y2=4x的焦点F作直线交抛物线于A(x1,y1),B(x2,y2),则x1x2=______.
∵抛物线y2=4x的焦点F(1,0),
∴设直线AB:y=k(x-1),
由
,得k2x2-2k2x-4x+k2=0,y2=4x y=k(x-1)
∵A(x1,y1),B(x2,y2),
∴x1x2=
=1.k2 k2
故答案为:1.