问题 解答题

设公比小于零的等比数列{an}的前n项和为Sn,且a1=-1,S3=3a3

(I)求数列{an}的通项公式;

(II)若数列{bn}满足bn=an+2n-1,求数列{bn}的前n项Tn

答案

(Ⅰ)∵公比小于零的等比数列{an}的前n项和为Sn,且a1=-1,S3=3a3

S3=a1+a1q+a1q2=-1-q-q2=-3,

∴q2+q-2=0,解得q=-2,或q=1(舍).

an=(-1)•(-2)n-1

(Ⅱ)∵数列{bn}满足bn=an+2n-1,

∴Tn=b1+b2+b3+…+bn

=(a1+1)+(a2+3)+(a3+5)+…+[an+(2n-1)]

=(a1+a2+a3+…+an)+[1+3+5+…(2n-1)]

=(-1)•

1×[1-(-2)n]
1-(-2)
+
n
2
[1+(2n-1)]

=-

1-(-2)n
3
+n2

解答题
选择题