问题
解答题
已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x
(1)当x<0时,求f(x)的解析式.
(2)作出函数f(x)的图象,并指出其单调区间.
答案
解:(1)设x<0,则﹣x>0,
∵x>0时,f(x)=x2﹣2x.
∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x
∵y=f(x)是R上的偶函数
∴f(x)=f(﹣x)=x2+2x
(2)单增区间(﹣1,0)和(1,+∞);
单减区间(﹣∞,﹣1)和(0,1).
