问题
填空题
过椭圆
|
答案
设直线与椭圆交于点A,B,设A(x1,y1),B(x2,y2)
由题意可得
,两式相减可得
+x12 16
=1y12 4
+x22 16
=1y22 4
+(x1-x2)(x1+x2) 16
=0(y1-y2)(y1+y2) 4
由中点坐标公式可得,
(x1+x2)=2,1 2
(y1+y2)=11 2
KAB=
=-y1-y2 x1-x2
=-x1+x2 4(y1+y2) 1 2
∴所求的直线的方程为y-1=-
(x-2)即x+2y-4=01 2
故答案为x+2y-4=0